A Hybrid Artificial Immune Genetic Algorithm with Fuzzy Rules for Breast Cancer Diagnosis
نویسندگان
چکیده
The automatic diagnosis of breast cancer is an important, real-world medical problem. In this paper we give an introduction to fuzzy systems, genetic algorithms and artificial immune system, and then we introduce a hybrid algorithm that gathers the genetic algorithms with the artificial immune system in one algorithm. The genetic algorithm, the artificial immune system and the hybrid algorithm were implemented and tested on the Wisconsin breast cancer diagnosis (WBCD) problem in order to generate a fuzzy rule system for breast cancer diagnosis. The hybrid algorithm generated a fuzzy system which reached the maximum classification ratio earlier than the two other ones. The motivations of using fuzzy rules incorporate with evolutionary algorithms in the underline problem are attaining high classification performance with the possibility of attributing a confidence measure (degree of benignity or malignancy) to the output diagnosis beside the simplicity of the diagnosis system which means that the system is human interpretable.
منابع مشابه
Diagnosis of Breast Cancer using a Combination of Genetic Algorithm and Artificial Neural Network in Medical Infrared Thermal Imaging
Introduction This study is an effort to diagnose breast cancer by processing the quantitative and qualitative information obtained from medical infrared imaging. The medical infrared imaging is free from any harmful radiation and it is one of the best advantages of the proposed method. By analyzing this information, the best diagnostic parameters among the available parameters are selected and ...
متن کاملAdaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis
The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...
متن کاملFeature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets
Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we ...
متن کاملSoft Computing Methods based on Fuzzy, Evolutionary and Swarm Intelligence for Analysis of Digital Mammography Images for Diagnosis of Breast Tumors
Soft computing models based on intelligent fuzzy systems have the capability of managing uncertainty in the image based practices of disease. Analysis of the breast tumors and their classification is critical for early diagnosis of breast cancer as a common cancer with a high mortality rate between women all around the world. Soft computing models based on fuzzy and evolutionary algorithms play...
متن کاملA fuzzy-genetic approach to breast cancer diagnosis
The automatic diagnosis of breast cancer is an important, real-world medical problem. In this paper we focus on the Wisconsin breast cancer diagnosis (WBCD) problem, combining two methodologies-fuzzy systems and evolutionary algorithms-so as to automatically produce diagnostic systems. We find that our fuzzy-genetic approach produces systems exhibiting two prime characteristics: first, they att...
متن کامل